首页> 外文OA文献 >A scalable unsupervised feature merging approach to efficient dimensionality reduction of high-dimensional visual data
【2h】

A scalable unsupervised feature merging approach to efficient dimensionality reduction of high-dimensional visual data

机译:一种可扩展的无监督特征合并方法,用于有效降低高维视觉数据的维数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To achieve a good trade-off between recognition accuracy and computational efficiency, it is often needed to reduce high-dimensional visual data to medium-dimensional ones. For this task, even applying a simple full-matrix-based linear projection causes significant computation and memory use. When the number of visual data is large, how to efficiently learn such a projection could even become a problem. The recent feature merging approach offers an efficient way to reduce the dimensionality, which only requires a single scan of features to perform reduction. However, existing merging algorithms do not scale well with high-dimensional data, especially in the unsupervised case. To address this problem, we formulate unsupervised feature merging as a PCA problem imposed with a special structure constraint. By exploiting its connection with k-means, we transform this constrained PCA problem into a feature clustering problem. Moreover, we employ the hashing technique to improve its scalability. These produce a scalable feature merging algorithm for our dimensionality reduction task. In addition, we develop an extension of this method by leveraging the neighborhood structure in the data to further improve dimensionality reduction performance. In further, we explore the incorporation of bipolar merging - a variant of merging function which allows the subtraction operation - into our algorithms. Through three applications in visual recognition, we demonstrate that our methods can not only achieve good dimensionality reduction performance with little computational cost but also help to create more powerful representation at both image level and local feature level.
机译:为了在识别精度和计算效率之间取得良好的折衷,通常需要将高维视觉数据减少到中维视觉数据。对于此任务,即使应用简单的基于全矩阵的线性投影也会导致大量的计算和内存使用。当视觉数据的数量很大时,如何有效地学习这样的投影甚至成为问题。最近的特征合并方法提供了一种减少维数的有效方法,该方法只需要对特征进行一次扫描即可进行归约。但是,现有的合并算法无法很好地处理高维数据,特别是在无监督的情况下。为了解决此问题,我们将无监督特征合并公式化为具有特殊结构约束的PCA问题。通过利用其与k均值的联系,我们将此受约束的PCA问题转换为特征聚类问题。此外,我们采用哈希技术来提高其可伸缩性。这些为我们的降维任务产生了可扩展的特征合并算法。此外,我们通过利用数据中的邻域结构来开发此方法的扩展,以进一步提高降维性能。此外,我们探索了将双极性合并(一种允许减法运算的合并函数变体)纳入我们的算法。通过在视觉识别中的三个应用,我们证明了我们的方法不仅可以以较少的计算成本实现良好的降维性能,而且还有助于在图像级别和局部特征级别上创建更强大的表示。

著录项

  • 作者

    Liu, L.; Wang, L.;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号